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Lecture Notes to Rice Chapter 5 
By H. Goldstein 
 
1.1   
Chapter 5 gives an introduction to probabilistic approximation methods, but is 
insufficient for the needs of an adequate study of econometrics.  The commonly non-
linear nature of economic models often requires approximation methods for a tractable 
empirical analysis. 
 
There are many probabilistic convergence concepts available, of which two, convergence 
in probability and convergence in distribution are discussed or implied in Rice. 
 
 
Def. 1  Convergence in Probability.  
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1.2   T
r.v.’s. 
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ple 1:   If   are iid with 1 2, ,X X K ( )iE X µ=  and 2Var( )iX σ= , then  
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X µ
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P
S S σ= →  (proven by the continuity 

ties of limits in probability described below). 

Note on the law of large numbers. In the lectures we gave a simple proof of the 
aw of large numbers based on Chebyshev’s inequality. That proof assumes that the 
ariance, 2var( )iX σ= , exists. It can be proven, however, that this assumption is 

ot necessary. Thus: If   are iid with 1 2, ,X X K ( )iE X µ= , then  
P

n
X µ

→∞
→ , which is 

 classical result in probability theory. ] 

rivial distributions.      It is sometimes convenient to interpret constants as special 
 Let  a  be any constant (a real number). We may interpret a as a random variable 



 2

by introducing the r.v., X, by  ( )P X a 1= = . Hence X can only take one value (a). The 
probability mass function is then given by    ( ) ( ) 1p a P X a= = = . By the definition of 
expectation and variance, we have (check formally!),  ( )E X a=  and  . var( ) 0X =
 
 
The cdf of X becomes 
 

(1) 
0  for   

( ) ( )
1   for   

x a
F x P X x

x a
<⎧

= ≤ = ⎨ ≥⎩
       (see figure 1) 

 
Figure 1 

 
We may call this distribution the trivial distribution at a. 
Note that ( )F x  is continuous everywhere except for x a= . 
 
(2)       The moment generating function (mgf) for X is  ( ) taM t e=    

(i.e.  ( ) ( )tX ta taM t Ee e P X a e= = = = ). 
 
 
Let a a  be a sequence of constants converging to a (in the usual sense) as 

. This means (slightly more precise than given in Sydsæter I):  For any  
1 2, , , ,naK K

n →∞ 0ε > , 
there is a number N such that  | |na a ε− ≤  for every n .  From this definition it 
follows that convergence of sequences in the usual sense can be considered as a special 
case of convergence in probability. 

N≥

 

 If  ,  then     (where the ’s are interpreted as r.v.’s) n n
a

→∞
→ a a

P

n n
a

→∞
→ na

 
(3)  
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Proof:   Let  0ε >  be arbitrarily small. We need to show that (| | ) 1n n

P a a ε
→∞

− ≤ → . But this 

probability must be either 0 or 1 according to if  | |na a ε− ≤  is false or true (since , ,  and na a ε  
are constants and therefore fixed and not subject to random variation). Hence, choosing N such that 
| |na a ε− ≤  for all  , we have n N≥

 

 
1   if  | |   is true, which it is for all  

(| | )
0  if  | |   is false                                       

n
n

n

a a n N
P a a

a a
ε

ε
ε

− ≤ ≥⎧
− ≤ = ⎨ − ≤⎩

 

 
This shows that  (| | ) 1n n

P a a ε
→∞

− ≤ →  since the probability is 1 for all n large enough.   Q.E.D. 

 
 
 
1.3    The continuity property of probability limits.   
 
Theorem 1 
 
 
 
(4)
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Reason:
Let  be two sequences of r.v.’s such that  , , 1, 2,n nX Y n = K
P

n n
X c

→∞
→   and 

. Let  be continuous at  x = c and   be continuous at x = c

and y = d.  Then 

P

n n
Y d

→∞
→

) )

( )g x ( , )h x y

    and   ( ) (
P

n n
g X g c

→∞
→ ( , ) ( ,

P

n n n
h X Y h c d

→∞
→

(This is also true when h has more than two arguments.) 
f for those interested is given in appendix 2.] 

e 2.     Suppose that 
P

n n
X c

→∞
→ . Then  also  11

P

n n n
Z X

n →∞

⎛ ⎞ c= − →⎜ ⎟
⎝ ⎠

. Here we use that 

 is continuous, and that xy 11
P

n n
Y

n →∞
1= − →  because of  (3). 

e 3.     Suppose that   are iid with 1 2, ,X X K ( )iE X µ=  and 2var( )iX σ= . Then 

2
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X X 2σ
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− →∑ 2S  (i.e. is consistent for 2σ ).   

   We have  2 2 2 2 2
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n 2 2X
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S X µ σ µ σ
→∞=

⎡ ⎤ ⎡ ⎤= − → ⋅ + − =⎢ ⎥ ⎣ ⎦− ⎣ ⎦
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using that, by the law of large numbers (see the note to example 1),  
2 2 2

1

1 ( )
n P

i i
i

X E X
n

2µ σ
=

→ = +∑ ,  and 
P

X µ→ . Then, use (4) and that  is 

continuous. Finally, use (3) as in example 1. We also obtain that  

2( , )h x y x y= −

2
P

S S σ= →   since  
( )g x x=  is continuous. 

 
 

Exercise 1.    Show that the sample correlation,  XY

X Y

Sr
S S

=  is a consistent estimator for 

the population correlation,  cov( , )corre( , )
var( )var( )

X YX Y
X Y

ρ = = , based on a random 

sample,  1 1 2 2( , ), ( , ), , ( , )n nX Y X Y X YK    (meaning that the n pairs are independent and 
have all the same joint distribution).  Hint:  To prove the consistency of the sample 

covariance, write  
1

1
1

n

XY i i
i

nS X Y
n n =

⎡ ⎤= −⎢ ⎥− ⎣ ⎦
∑ XY . 

 
 
 
1.4    Convergence in distribution 
 
In the introductory statistics course, the following version of the central limit theorem 
(CLT) is presented:   
 
Let  be iid with  1 2, ,X X K E( )iX µ=   and  var ( ) 2

iX σ=   (implying that  E( )X µ=   and  
2

var( )X
n
σ

= ).  Then, for large n (  usually considered sufficient), we have 30n ≥

 

 
approximately

~ (0,n
X XZ n

n

µ µ
σ σ
− −

= = 1)N      ( “~” means “is distributed as”) 

This statement is somewhat un-precise. What we mean is that “ nZ  converges in 

distribution to Z, where Z ~ N(0, 1), as  ”.  (We write this shortly,  n →∞
D

n n
Z Z

→∞
→ , or 

simply  
D

nZ Z→ ).  The formal mathematical definition, given in Rice, is: 
 
Def. 2   (Convergence in distribution) 
 
 
 
 
 

Let   be a sequence of r.v..’s with cdf’s, 1 2, ,Y Y K ( ) ( )n nF y P Y y= ≤ , and Y a r.v.

with cdf  .  We say that Y Y  if    for every 

y where the limit cdf, , is continuous. 

( ) ( )F y P Y y= ≤
D

n n→∞
→ ( ) ( )n n

F y F y
→∞
→

( )F y
approx.
)F y(Then, for large n, Y  ) ~ (n
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This means:  If the limit cdf, ( )F y , is continuous for y a=  and y b= ,  then 

 ( ) ( ) ( ) ( ) ( ) ( )n n n n
P a Y b F b F a F b F a P a Y b

→∞
< ≤ = − → − = < ≤

Hence,   for large n. ( ) (nP a Y b P a Y b< ≤ ≈ < ≤ )
 
Note that, if the limit distribution is N(0,1) (which is most often the case), then the limit 
cdf (usually written  ( ) ( )x P Z xΦ =  where ) is continuous for all x. ≤ )~ (0,1Z N
 
 
Another useful comment is that convergence in probability can be interpreted as a special 
case of convergence in distribution by the following lemma: 
 

write Y c .) 
→∞
→n n

(5)   
 
 
 
 
 
 
[For those interested, a proof is written out in appendix 2.] 
 
 
 
1.5    Determination of limit distributions 
 
It turns out difficult (usually) to use the definition of limit in distribution directly to 
derive a limit distribution. Therefore, there has been developed a number of techniques 
and tools in the literature for this purpose. One important tool is by means of moment 
generating functions (mgf’s) formulated as theorem A in Rice, chapter 5, and cited below 
in theorem 2. (An even more important tool is by means of so-called characteristic 
functions, (see Rice at the end of section 4.5), which requires complex analysis and is 
omitted here.) 
 
Theorem 2  (Theorem A in Rice, chapter 5) 
Let  Y n  be a sequence of r.v.’s with cdf’s,  Y F . 
Suppose that the mgf’s,  

, 1, 2,n = K y P Y y= ≤~ ( ) ( )n n n

( ) ntY
nM t Ee= , exist for all n.  Let  Y be a r.v. with cdf, 

 and  mgf  ( )F y ( ) tYM t Ee= , and assume that  ( ) ( )n n
M t M

→∞
→ t

Y
→∞
→

 for all t in an 

open interval that contains 0. Then  Y   (i.e.   for all y 

where  is continuous).   

D

n n
( ) ( )n n

F y F y
→∞
→

( )F y
 Y  is equivalent to   where Y is the trivial r.v. at c (i.e.  

) with the trivial cdf as in (1). (The last statement we may simply 

P

n n
c

→∞
→ Y

1

D

n n
Y

→∞
→

( )P Y c= =
D
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Example 4 (example A in Rice, section 5.3) 
 
We simplify the argument in Rice by using l’Hôpital’s rule instead of his series 
argument.   
Let  ~ pois( ), 1, 2,n nX nλ = K  where  1 2, ,λ λ K  is a sequence of numbers such that 

n n
λ

→∞
→ ∞ .  Then  E( ) var( )n nX X nλ= = . We will show that the standardized  

 

 E( ) 1
var( )

n n n n
n n

n n n

X X XZ X
X n

λ λ
λ λ

− −
= = = −

)

  

 
converges in distribution to , which follows if we can show that the mgf of ~ (0,1Z N nZ  

converges to the mgf of  Z ~ N(0, 1), i.e. 
2 2( ) t

ZM t e= . The mgf of nX  is (see Rice, 
section 4.5, example A): 
 
  ( 1)( )

t
n

n

e
XM t eλ −=

 
We have from before that, if X and Y are r.v.’s such that  Y a bX= + , the mgf of Y is,  

( ) ( )at
Y XM t e M bt= .  Hence 

 

 (1( )
t n

n n n

n n

t t e
Z X

n

M t e M t e e
λλ λ λ

λ
− − 1)−

⎛ ⎞
= = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
      or 

 
 (ln( ( )) 1n

n

t
Z n nM t t e λλ λ= − + − )     (notice printing mistake in Rice) 

 

Put  1

n

x
λ

= .    Since n n
λ

→∞
→ ∞ , we have  . From l’Hôpital’s rule we get 0

n
x

→∞
→

 

 ( )
2 2

2 2 x 0 x 00

1 1ln( ( )) 1 lim lim
2 2n

xt xt tx
xt

Z x

t e xt te t tM t e
2

e t
x x x x→ →→

− − −
= − + − = → = =  

 

Since  is a continuous function of x,  xe
2 2( )

n

t
Z n

M t e
→∞
→ , implying  .  

(End of example.) 

~ (0,1)
D

n n
Z Z N

→∞
→

 
 
 
 
We will now repeat Rice’s proof of the central limit theorem (CLT) supplied with some 
details. 
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Theorem 3  (CLT,  theorem B in Rice, section 5.3) 

 
 
[Note. 

 
Proof

 
 
 

 

 

 

 
 

 

 

 

 

Let   be a sequence of iid  r.v.’s with  1 2, ,X X K E( ) 0iX =  and  2var( )iX σ= .  

Let  S    (implying  
1

n

n
i

iX
=

=∑ E( ) 0nS =   and  2var( )nS nσ= ).  Then  

~ (0,1)
var( )

D
n n

n
n

S S Z N
S nσ →∞

= →    (or  ( )n

n

SP x
nσ →∞

⎛ ⎞≤ → Φ⎜ ⎟
⎝ ⎠

x  for all x since 

( ) ( )x P Z xΦ = ≤  is continuous everywhere). 
 The proof is only given here for the special case that the mgf of jX ,  ( ) E( )jtXM t e= , exists in 
an open interval containing 0, which is not always the case (see the note to (A5) in appendix 1). 
The proof for the general case is almost identical to the given one, but based instead on 
characteristic functions (defined by  ( ) E( )jitXg t e=  where i is the complex number, 1− ). 
Characteristic functions exist for every probability distribution. Such a proof, however, requires 
some knowledge of complex analysis, and is omitted here. ] 

.   Assume that the common mgf of ,  1 2, ,X X K ( ) E( )itXM t e= , exists in an open 
interval, , where . Then, according to (A5) in appendix 1, ( , )a b 0a < < b ( )M t , 
has continuous derivatives of all orders in .  ( , )a b

Since  are independent and identically distributed, the mgf of  is 1 2, ,X X K nS

 ( ) ( ) ( ) ( )
n

i=1 1 2 1 2

t

( ) E e E E E E ( )
i

n n

n

X
tX tXtX tX tX tX n

SM t e e e e e e
⎛ ⎞∑⎜ ⎟= = = =
⎜ ⎟
⎝ ⎠

L L M t  

Putting  n
n

SZ = , we obtain the mgf,   
nσ

( )
n

n

Z
tM t M

nσ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Applying Taylor’s formula (see (A2) in appendix 1) to ( )M t , we have 

2 3

( ) (0) '(0) ''(0) '''( )
2 3!
t tM t M tM M M c= + + +    where c is somewhere between 0 

and t. We have  M ,  0(0) E( ) 1iXe= = '(0) E( ) 0iM X= = , and  
2''(0) E( )iM X 2σ= = . Hence 

 
2 3

2( ) 1 '''( )
2 6
t tM t Mσ= + + c  
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 Substituting into ( )
nZM t , we obtain 

 

  

2 3

2( ) 1 ''( )
2 6n

n

n

Z n

t t
t n nM t M M c

n
σ σσ

σ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥= = + +⎜ ⎟ ⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 or 
 

  
2

( ) 1
2n

n

Z n
tM t R
n

⎡ ⎤
= + +⎢ ⎥
⎣ ⎦

  where  
3

3
3 2

'''( )
6

n n
tR M c

nσ
= n, and c  lies between 

0 and   t
nσ

.   

 

We will now prove that  0n n
n R

→∞
⋅ → , i.e. 

3

3
'''( ) 0

6n n n

tn R M c
nσ →∞

⋅ = →    

Since lies between 0 and nc t
nσ

, and 0
n

t
nσ →∞
→ , we must have that . 

Therefore,   since 

0nc →

'''( ) '''(0)nM c M→ '''( )M t  is continuous in 0 (see (A5) in 

appendix 1). Hence, '''( )nM c  is bounded, and '''( ) / 0nM c n → , which proves 
that . 0n n

n R
→∞

⋅ →

We finally get  
2

( ) 1 1
2n

n n
n

Z n
atM t R

n n
⎡ ⎤ ⎡ ⎤= + + = +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 where  
2 2

2 2n n
t ta n R= + ⋅ →  

Thus, using (A3) in appendix 1, we get 
2 2( )

n

t
ZM t e→ , which is the mgf of 

. Property A in Rice, section 4.5, tells us that the mgf uniquely determines 

the probability distribution. Hence,  .           Q.E.D. 

(0,1)N

~ (0,1)
D

n n
Z Z N

→∞
→

 
 
In practice the following reformulation of the CLT is the most common: 
 
Corollary (CLT) 
 
 

 

 
 
 
 
 
 

If  ~ iid, with E(1 2, ,X X K )iX µ=  and  2var( )iX σ= , then  

( ) ~ (0,1)
D

n

n X Z Nµ
σ →∞

−
→ ,  which means that  

2approximately

~ ( ,X N
n

)σµ

 for large n. 
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Proof.  Put i iY X µ= − .  Then,   ~ iid, 1 2, ,Y Y K E( ) 0iY =  and  2var( )iY σ= , and we can 
use theorem 3: 

 1 ( ) ~ (0,1)

n

i D
i

n

Y
nX n n X Z N

n n
µ µ

σσ σ
=

→∞

− −
= = →

∑
 

 

 
approx.( ) ~ (0,1n X Nµ

σ
−

⇒ )  for large n   
approx.

2( ) ~ (0,n X N )µ σ⇒ −  for large n 

 

 
2approx.

~ (0,X N
n

)σµ⇒ −   for large n   
2approx.

~ ( ,X N
n

)σµ⇒  for large n.   Q.E.D. 

 
 
The last result we present, is an extremely useful result for statistical practice: 
 
Theorem 4  (Slutsky’s lemma) 
 
 
 
 
 
 
 
 
The pro
illustrate
 
Here we
presente
 
Exampl
Suppose
confiden
the com
approxim
CLT, w
 

For larg

the uppe
 

Let   be r.v.’s such that  , ,n nA B X n

P

n n
A a

→∞
→  (constant), 

P

n n
B b

→∞
→  (constant), 

and  
D

n n
X X

→∞
→ .  Then  

D

n n n n
A X B aX

→∞
b+ → +  

P P

In particular,  if , then  0n n

A
→∞
→ n n n n

A X B b
→∞

+ →   (because of (5) above). 

of is a straightforward, but somewhat lengthy, ,ε δ - argument along the lines 
d in appendix 2, and is omitted here. 

 illustrate the result by making some arguments for confidence intervals 
d in the introductory statistics course more precise. 

e 5. (Confidence intervals) 
  are iid, with 1 2, ,X X K E( )iX µ=  (unknown) and  2var( )iX σ= .  We want a 
ce interval (CI) with degree of confidence, 1 α− , for the unknown µ . Even if 

mon distribution, ( )F x , for the iX ’s, is unknown, the distribution of X  is 
ately known for large n ( n  usually considered sufficient) because of the 

hich we utilize as follows.  
30≥

e n,    
approx.

~ (0,1n
XZ

n
µ

σ
−

= )N .  Hence,  
2 2

( )nP z Z zα α 1 α− ≤ ≤ ≈ −  where 
2

zα  is 

r 2α -point in .  Manipulating the probability, we get (0,1)N
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2 2

1P X z X z
n nα α
σ σµ α

⎛ ⎞
− ≤ ≤ + ≈⎜ ⎟

⎝ ⎠
−  

 
Thus, if σ is known, then an approximately 1 α−  CI for µ  is given by 
 

 
2

X z
nα
σ

±  

 
In practice σ is usually unknown, but according to Slutzky’s lemma, can be replaced by a 
consistent estimator, as the following argument shows: 
 

Put  
ˆn

XU
n
µ

σ
−

=  where  2

1

1ˆ (
1

n

i
i

S X
n

σ
=

= = −
− ∑ 2)X  is consistent for σ  (see 

example 3). We then have 
 

 
ˆ ˆˆn n

X XU Z
n n
µ σ µ σ

σ σσ σ
− −

= = ⋅ = ⋅  

 

Since  1
ˆ

P

n

σ σ
σ σ→∞

→ =  (see theorem 1 and example 3), we have from Slutzky’s lemma 

. Hence, for large n,  1 ~ (0
D

n n
U Z Z N

→∞
→ ⋅ = ,1)

2 2

( )nP z U zα α 1 α− ≤ ≤ ≈ − . Manipulating 

this, we get 
 

 
2 2

ˆ ˆ
1P X z X z

n nα α
σ σµ α

⎛ ⎞
− ≤ ≤ + ≈⎜ ⎟

⎝ ⎠
−  

 

which gives the approximate  1 α−  CI for µ :   
2

ˆ
X z

nα
σ

± . Simulation studies show that 

the approximation is usually satisfactory for .  30n ≥
 
We have a similar state of affairs for poisson- and binomial models: 
 
The poisson case:   Suppose that the number, X, of working accidents during t time units 
in a large firm, is ~ pois( tλ ), where λ  is the unknown expected (i.e. long run average) 
accident rate per time unit in the firm. Then E( ) var( )X t Xλ= = , which implies that  

ˆ X
t

λ =  is an unbiased estimator of λ .  Since  ˆvar( ) 0
tt

λλ
→∞

= → , it follows from 

Chebyshev’s inequality (check!) that λ̂  is consistent for λ  as well (i.e., ˆ P

t
λ λ

→∞
→ ). From 

example 4 we get that 
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ˆ ˆ

~ (0,1)
D

t t

X t t tZ t
t t
λ λ λ λ λ

λ λ λ →∞

− − −
= = = → Z N     since  tλ →∞  as . t →∞

 
Slutzky’s lemma shows that we can replace λ  by λ̂  in the denominator of tZ  without 
destroying the approximation substantially, i.e., 
 

 
ˆ

1 ~ (0
ˆ ˆ

D

t t t
U t Z Z Z Nλ λ λ

λ λ →∞

−
= = ⋅ → ⋅ = ,1)   since  1

ˆ

Pλ

λ
→  as , using 

that the function, 

t →∞

( )g x xλ=  is continuous in x. We then get for large t ( the criterion 
10tλ ≥  is usually considered sufficient ), the following approximation 

 

 
2 2

ˆ ˆˆ ˆ 1P z z
t tα α
λ λλ λ λ α

⎛ ⎞
⎜ ⎟− ≤ ≤ + ≈ −
⎜ ⎟
⎝ ⎠

 

giving an approximate 1 α−  CI for λ :  
2

ˆˆ z
tα
λλ ±  . 

 
Discuss the binomial case yourself. 
 
 
 

Appendix 1 (mathematical prerequisites for Rice, chapter 5) 
The students are recommended to read Sydsæter I, section 6.4 on sequences (“tallfølger”) 
and section 7.6 on Taylor polynomials and series.  
 
The following result is much used in probability theory (see a motivation in Sydsæter I, 
section 7.6). 
 
(A1)
  
 
 
 
 
 
 
 
 

For any real a,  e  can be expressed as an infinite series a

 
2

0
1

! 2! !

i n
a

i

a a ae a
i n

∞

=

= = + + + + +∑ L L  

If c is a common factor, it can be taken outside the sum,     
i ia a∞ ∞
  
0 0! !

a

i i
c c c

i i= =

= =∑ ∑ e  

[Note.  The theory of infinite series is not treated in the mathematics curriculum, except 
geometric series, so we will not go into this here. We only mention that the precise 
mathematical meaning of the sum is a limit of a sequence of numbers (see Sydsæter I, 
section 6.4 for the meaning of a sequence):   
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2

n
lim 1

2! !

n
a a ae a

n→∞

⎛ ⎞
= + + + +⎜ ⎟

⎝ ⎠
L ,  

which can be shown to be well defined (we say that the series is convergent) for every a. 
The only result from the theory of infinite series we use is the last statement that a common 
factor can be taken outside the sum. The series is mainly used in this course to derive the 
mgf for a poisson r.v. (see Example A in Rice, section 4.5):  ~ pois( )X λ  implies that the 

mgf is  ( 1)( ) E( )
ttX eM t e eλ −= = ]  

 
Much of approximation theory in mathematics and probability theory is based on the 
famous Taylor’s formula, given in (A2) (see Sydsæter I, section 7.6): 
 
(A2)  
 
 
 
 
 
 
 
 
 
 

(A3)     f

 
Example 
expectatio
we want t
complicat
around x
expansion
 
 (g
 
By taking
are consta
Let ( )f x  be  times differentiable in an interval that contains 0 and x. 
Then, 

1n +
( )f x  can be approximated by a polynomial as follows 

 

 
2

( )
1( ) (0) '(0) ''(0) (0) ( )

1! 2! !

n
n

n
x x xf x f f f f R x

n += + + + + +L  

 

where the error term, 1( )nR x+ , is   
1

( 1)
1( ) ( )

( 1)!

n
n

n
xR x f

n

+
+

+ =
+

c , where c 

is a number lying somewhere between 0 and x. 
 
[Note:    In (A2) we say that ( )f x  is expanded around 0x = . From (A2) it follows that 
we can expand ( )f x  around any other value, x µ= , where f is differentiable: Write 

( ) ( )f x f xµ µ= + −  and define ( ) ( )g h f hµ= + where h x µ= − . Then 

(0) ( )g f µ=  and  ( ) ( )(0) ( )n ng f µ= . Applying (A2) to , we obtain an expansion 
of 

( )g h
( )f x  around x µ= : 

1
( ) ( 1)( ) ( )( ) ( ) ( ) '( ) ( ) ( )

1! ! ( 1)!

n n
n nx x xx g x f f f f c

n n
µ µ µµ µ µ µ

+
+− − −

= − = + + + +
+

L  

where c is a number lying somewhere between µ  and x.] 

6.    Rice section 4.6 gives examples of finding approximate expressions of 
ns and variances. Let X be a r.v. with E( )X µ=  and  2var( )X σ= . Suppose 
he expectation and variance of a transformed r.v., ( )Y g X= . If g is 
ed it is often hard to find ( )E Y  and var(Y) exactly. If  is differentiable ( )g x
µ= , however, we can easily obtain approximate values by using Taylor 

 around µ . Ignoring the error term, we have from (A3) with n =1:  

) ( ) '( )( )X g g Xµ µ µ≈ + −  

 expected value and variance on both sides, we get (note that ( )g µ  and  '( )g µ  
nts) 
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 ( ( )) ( )E g X g µ≈   and   2 2var( ( )) [ '( )]g X g µ σ≈  
 
By including an extra term in the expansion, we may obtain a (hopefully – it depends on 
the error term) better approximation to the expectation: 
 

 2''( )( ) ( ) '( )( ) ( )
2

gg X g g X Xµµ µ µ µ≈ + − + −  

gives 

 
2

( ( )) ( ) ''( )
2

E g X g gσµ µ≈ +  (read example B in Rice, sec. 4.6) 

Note that it is usually not a good idea in this context to include many terms in the Taylor 
approximation since terms like  ( )rX µ−  for larger r are often statistically quite unstable, 
which may destroy the approximation.  (End of example.) 
 
 
From (A2) we can now derive the following much used result (also used in the proof of 
the CLT): 
 
 
(A4)
  

 

 
 
 
 
 

Proof:  T

Pu

on

No

n ⋅

(im

to 
Q.E

 
 
 

If   is a sequence of numbers(see Sydsæter I, section 6.4)
converging to a number, a (i.e. ), then 

, 1, 2,na n = K

n n
a

→∞
→ a

na⎛ ⎞
  1 an

n
e

n →∞
+ →⎜ ⎟

⎝ ⎠
 

he result follows if we can show that  naln 1+
n n

n a
→∞

⎛ ⎞⋅ →⎜ ⎟
⎝ ⎠

xe  (since  is a continuous function).  

t  n
n

ax
n

= . Then . Applying (A2) to the function,  , with 

ly one term plus error, we get  

n n n
n x a a

→∞
⋅ = → ( ) ln(1+x)f x n= ⋅

( ) (0) '( )
1

nf x f f c x
c

= + =
+

x , where c is between 0 and x. 

te that  . Therefore,(0) 0f = ( ) ln(1 )
1 1

n
n n n

n

n x af x n x
c →∞

a⋅
= ⋅ + = → =

+
, using that 

 and that . The last statement follows since  always lies between 0 and n n
x a

→∞
→ 0n n

c
→∞
→ nc nx  

plying  ), and 0 | | |nc x≤ ≤ |n 0n
n n

ax
n →∞

= →  since the sequence,    converges 

a, and therefore must be bounded (i.e., there is a number C such that | |

, 1, 2,na n = K

na C≤  for all n).     
.D. 
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In order to make the proof of the CLT completely rigorous we need one more 
mathematical fact. 
 
 
(A5)     
 
 
 
 
 
[Note.    T

the
int
E(
r.  
no
ν d

 
 
 
 

Appen
 
Proof o
We will
(in case 

Suppose

an 0ε >

Accordi
such tha
 
Define e

(|nC h=
 
We then
B are ev
Accordi

This imp
 If the mgf, ( ) E( )tXM t e=  of a r.v., X, exists for all t in an open interval 
containing 0 (i.e. for all t a( , )b∈  where 0a b< < ), then the n-th derivative, 

( ) ( )nM t , exists for all  n 1,2,= K in this interval. This implies, in particular 
that  ( ) ( )nM t  is continuous in ( ,  for all n.  )a b
his result is not hard to prove, but requires results from more advanced integration theory, and is 
refore omitted here. Note also that (A5) shows that the assumption that ( )M t  exists in an open 
erval around 0, is a quite strong assumption on the distribution of X. It implies that moments, 

)rX , of all orders  exist. This follows since,   then exists for all 
 The assumption is valid for most of the common distributions met in this course, but there are 
table exceptions. For example it is not true for t-distributions, since, if X is t-distributed with 

1, 2,r = K ( )E( ) (0)r rX M=

egrees of freedom, then it can be shown that E( )rX  exists only for r ν< . ] 

dix 2 (some proofs) 

f (4)  (optional reading) 
 prove the h(x,y)-case. Try to write out a proof for the simpler g(x)-case yourself 
you don’t realize that the g-case follows directly from the h-case). 

  and  and that  is continuous for 
P

n n
X

→∞
→ c d

P

n n
Y

→∞
→ ( , )h x y ,x c y d= = . Choose 

 arbitrarily small. We need to prove that (| ( , ) ( , ) | ) 1n n n
P h X Y g c d ε

→∞
− ≤ → . 

ng to the meaning of continuity (see e.g. Sydsæter I, sec. 6.9), there is a 0δ >  
t, whenever | |x c δ− ≤  and  | |y d δ− ≤ , then  | ( , ) ( , ) |h x y h c d ε− ≤ .  

vents, , ,n n nA B C  by  (| | )n nA X c δ= − ≤ ,  (| | )n nB Y d δ= − ≤ ,  and 
( , ) ( , ) | )n nX Y h c d ε− ≤

n

.   

 have  n nA B C∩ ⇒  which implies that  .     (Note that if A, 
ents such that 

( ) ( )n nP C P A B≥ ∩ n

A B⇒ , or  A B⊂  interpreted as sets, then ).  
ng to the definition of probability limit,    and  .   

( ) ( )P A P B≤
( ) 1n n

P A
→∞
→ ( ) 1n n

P B
→∞
→

lies that   since ( )n n n
P A B

→∞
∩ → 1
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( ) ( ) ( ) ( ) 1 1 1 1n n n n n nP A B P A P B P A B∩ = + − ∪ → + − = n →∞
1 1

n 1

c Y 1

 as   (Note that 
 implies that  ).  Hence, since 

, also   as .      Q.E.D. 
( ) ( )n n nP A B P A∪ ≥ → ( )n nP A B∪ →
( ) ( )n nP C P A B≥ ∩ ( )nP C → n →∞

 
 
Proof of (5)  (optional reading) 

i)  Suppose that .  We need to prove that   where . Let the 

cdf of  be 

P

n n
Y

→∞
→

D

n n
Y

→∞
→ ( )P Y c= =

nY ( )nF y  and the cdf of Y be ( )F y , i.e. the trivial cdf at c (see 1.2) 
 

 
0  for   y

( ) ( )
1   for   y

c
F y P Y y

c
<⎧

= ≤ = ⎨ ≥⎩
           Thus  ( )F y  is continuous for all . `y c≠

Hence, according to the definition of convergence in distribution, we need to show that 
( ) ( )n n

F y F
→∞
→ y  for all  , or   for  `y c≠ ( ) 0n n

F y
→∞
→ y c<  and   for .  ( ) 1n n

F y
→∞
→ y c>

Again we use that if A B⇒ , then ( ) ( )P A P B≤ .  Suppose  (or  ). Then the 
following events satisfy 

y c> 0y c− >

 
  (| | ) ( ( ) ) ( ( ) )n nY c y c y c Y c y c c y c Y c y c− ≤ − ⇔ − − ≤ − ≤ − ⇔ − − ≤ ≤ + −n

c

  (2 ) ( )n nc y Y y Y y⇔ − ≤ ≤ ⇒ ≤

Hence    since .  Therefore, we must 

have that  . 

( ) ( ) (| | ) 1n n n n
F y P Y y P Y c y c

→∞
= ≤ ≥ − ≤ − →

P

n n
Y

→∞
→

( ) 1n n
F y

→∞
→

Now, suppose  (i.e. ). We have y c< 0c y− >
 

 ( ) ( ) ( ) (| | ) (| |
2n n n n n

c yY y Y y c Y c y Y c c y Y c −
≤ ⇔ − ≥ − ⇔ − ≥ − ⇒ − ≥ − ⇒ − > )  

Thus,  ( ) ( ) | | 0
2n n n n

c yF y P Y y P Y c
→∞

−⎛= ≤ ≤ − > →⎜
⎝ ⎠

⎞
⎟

Y 1

,  which implies that  , 

and we have proven that . 

( ) 0n n
F y

→∞
→

D

n n
Y Y

→∞
→

 

ii)   Now, conversely, suppose that   where 
D

n n
Y

→∞
→ ( )P Y c= = . Then 

( ) ( )n n
F y F

→∞
→ y  for all  . Let  `y c≠ 0ε >  be arbitrary small. We have 

 
 (| | ) ( ) ( ) ( )n n n nP Y c P c Y c P c Y c F c F c( )nε ε ε ε ε ε− ≤ = − ≤ ≤ + ≥ − < ≤ + = + − −ε  
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Since ( )F y  is continuous for y c ε= −  and  y c ε= + , the last expression converges to  
( ) ( ) 1 0F c F c 1ε ε+ − − = − =  as n .  Hence  →∞ (| | ) 1n n

P Y c ε
→∞

− ≤ → , and we have 

proven that  .       Q.E.D. 
P

n n
Y

→∞
→ c
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